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TWO-PHASE UPFLOW IN RECTANGULAR CHANNELS 
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Abstract--A comparison of a theoretical and experimental investigation of a two-phase concurrent 
flow of air and water in a vertical rectangular channel has been obtained. The model shows the 
importance of considering a lateral interracial term in a fully developed flow situation. The one 
parameter model shows also that the extended idea of an "eddy diffusivity" as used in a single phase 
flow is feasible to model shear stress in the continuous phase. 

INTRODUCTION 

The use of sophisticated two-phase flow models has increased in the last ten years due to the 
advent of powerful computers. These models are in general two and multidimensional 
transient models that include a variety of the two-phase flow phenomena such as nonequili- 
brium thermal effects and unequal flow velocities Rivard (1977), Hirt (I 979), Duval (1980). 
The constitutive relationships in these models play a very important role in determining how 
accurate their predictions could be. The need for improving our understanding of these 
constitutive relationships is still of keen interest to many researchers in this field. 

In these cases, where one can assume the existence of "fully developed" flow the use of 
these codes would seem unjustified as the resulting equations are considerably simplified. 
These cases would be internal two-phase flows where the flow is adiabatic with no 
appreciable pressure drop through the system compared to the average system pressure in 
the case of a compressible gas. These requirements are needed in addition to the basic 
requirements of constant cross-section normal to the direction of flow and enough developing 
length to achieve the fully developed condition. 

The purpose of this paper is to compare the results of two-phase flow experiments, 
described by Moujaes (1980) in a rectangular channel of 12.7 x 76.2 mm cross section, and 
such a model where the effect of a lateral lift force and the "turbulent eddy diffusivity" 
concept are considered. 

CONSERVATION EQUATIONS 

The conservation equations of mass, x momentum (axial), and y momentum (76.2 mm) 
for each phase are now given. It is assumed that the variation of velocity across the small 
spacing of the channel has been averaged. The momentum equations in particular must be 
given in great detail since the forces responsible for maintaining the void profile are often 
neglected. Only the steady-state version of these equations will be presented. The continuity 
equation for phase k is 

~ (P:kUk) + Ty (0::~) = o, [i] 

where k = G for gas and L for liquid, and where p designates density and E is the void 

fraction. 
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The x and y momentum equations are 

~(p~u~) + ~ ~y (p ,~u ,~ )  = - 2-; ( ~, P ) 
[21 

~x 
+ p~kg~ + (~k~'..k) + ~(*k". .k)  + G.k -- Fw~.~ 

[3] 

where u and v are the velocity components in the x and y directions (x direction is main 
direction of flow), and r represents either shear or normal stresses with F designating either 
interfacial or wall shear respectively and/-denoting interface. It is now desirable to simplify 
these equations by making a number of assumptions. The most important assumption is that 
the flow becomes fully developed. The assumptions are: 

1. Gas and liquid densities are constants. 
2. Steady-state and fully developed flow, i.e. x-direction pressure gradient is a constant 

and all other partial derivatives with respect to x are zero. 
3. Shear stress in the dispersed phase, i.e. gas, can be neglected. 
4. Variations in the bulk normal stresses in the lateral direction are negligible. 
5. Profiles are symmetric about the channel centerline and gravity acts only in the 

negative x direction. 
6. Only the liquid phase wets the wall, i.e. wall drag is zero for gas. 

With these assumptions, the continuity equation for each phase are identically satisfied. 
Furthermore, the phase velocities have the following form: vk = 0, uk = u k ( y ) .  However, the 
overall balance of the volume flow rate of each phase in the channel must be equal to the rate 
injected at the entrance of the channel. This establishes an important relationship between 
the velocity and void profiles, i.e. 

Q~ = 2h f0  y~ ¢kUk dy, [4] 

where Q is the total volumetric flow rate, h is the depth of channel and Yc is half channel 
width. Because the transverse velocity components are identically zero and the axial phase 
velocities are only functions of y, the left-hand side of the momentum equations are zero. 
Thus, the x and y momentum equation have now been reduced to the following form: 

0 = - ~ x  (~kP) + PkEkg~ + Fi~.k --  F,,~.k + ~.. (Ek~'~,y.k), 
Oy 

[51 

0 = ~y(~kP) + Fiy.k. [6] 

In [5], the last two terms drop out for the gas phase. 
The compatibility relation between the two phases must hold, i.e. 

eo + eL = 1.0. [7] 
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Also, the interfacial forces must balance between the two phases, i.e. 

E,.c = - G , L ,  [81 

Fiy.c = -Fi~.L. [91 

Another assumption must now be added to the model. This assumption is that there is 
negligible pressure drop across the liquid-gas interface. This is a reasonable assumption 
since nearly all bubbles are greater than 2 mm in diameter and the gas slugs are considerably 
larger that the bubbles. 

Adding together [6] for both phases and using the compatibility relation gives 

@ / @  = O. [ 101 

From this result, the lateral momentum equation for the gas phase becomes 

d~ G 
0 = --p '~y + F/y.G. I l l ]  

Under the assumption of negligible change in curvature and surface tension, Ishii (1975) 
presents a general expression for this interfacial force which is related to the individual 
processes causing this force. His expression is 

d~ G 
Fiy.G = Fd~go, + Pi "-~y , [121 

where 

Fdrag,r the net form and shear drag at the interface in y direction, 
Pi the interfacial pressure (which is assumed different from the bulk pressure). 

It at first may appear inconsistent that an interfacial pressure different from the bulk 
pressure may be important. However, if one visualizes bubbles as solid spheres, ordinary 
fluid mechanics shows that the pressure at the surface of the sphere is different from the bulk 
pressure. 

Combining [11] and [12] gives 

) d~c 
(Pi - P ~ y  = --Fd=g~v. [131 

The final equation needed to complete the system is obtained by adding the x-momentum 
equations for each phase together. The interfacial force terms cancel out. For air-water 
flows at low pressure, the gas density is negligible compared to the liquid density and can he 
removed from the body-force term. The result is 

dp d 
- d x  + ,a ,~g~ + ~ ( ,~7 , .~)  + Fw~.~ - O. [14] 

Thus, there are five basic unknowns: ~c, ~L, uc,  u t  and p. There are five basic equations: [4] 
for each phase and [7], [13] and [14]. The volume flow rates Qk are parameters and 
constitutive relations are needed for Fd~.g,, p,- - p, rxy.L, and Fwx,v 
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C O N S T I T U T I V E  EQUATIONS 

A set of constitutive equations will now be developed which will allow a solution to the 
equation set just obtained. The origin of the model used was work by Delhaye (1969). Work 
of Herringe & Davis (1976) have shown that for practical purposes, the flow could be 
considered as fully developed for L / D h  = 30. In this work, L / D h  is approximately equal to 60 
which amply satisfies their criteria. 

L a t e r a l  in ter fac ia l  d rag  

Using an analogy based on the work of Saffman (1965), Delhaye (1969) proposed a 
relation for the lateral interfacial force on a bubble. He assumed that this force had the 
following properties: 

Proportional to relative velocity gradient. 
Inversely proportional to turbulent eddy diffusivity of liquid. 
Inversely proportional to relative velocity. 
Proportional to liquid kinematic viscosity of liquid. 

Hence, the following relation was obtained: 

Fbubble,y VLd d(uG -- UL) [15] 
PL(U6 - uL)2d 2 - C e(u~ - uL) dy  ' 

where Fbubb~¢.y designates the interfacial force on the bubble, d diameter for the bubble, C 
constant of proportionality, vL is the liquid kinematic viscosity and e is the turbulent eddy 
diffusivity for transverse lift term. 

Equation [I 5] is basically a lateral "lift" coefficient. Now, the void fraction is used to 
relate individual bubbles to the net lateral drag on the gas phase. The result is 

F~rag.y = Fb.bbl.,y (6Ec/lrd 3) [16] 

Combining [15] and [16] gives 

[17] 

The turbulent eddy diffusivity used in [15] and [17], in analogy with the study by Saffman 
(1965), can be related to the relative velocity using the standard mixing length approach: 

e = - k 2 ( y c  - y)2 d(ua - UL) 
dy ' [181 

where k 2 is a constant. 
Equation [ 18] is substituted into [ 17] to eliminate the velocity gradient multiplier. The 

result is 

{6COL I , c ( u c  - uL) 
Fora,,y = - t Trk2 ] -'('~ - - ' y -~  " [19] 

This equation gives the form of the lateral force on the gas phase. The scaling constant C 
remains to be determined. 

Validation of Saffman's (1965) term needs three conditions to be satisfied. The first two 
of these conditions are satisfied in this study. Saffman (1965) points out that observations 
made by Oliver (1962) show qualitative agreement with that study in a Poiseuille flow. 
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These observations back the assumption used in this study ofthe existence of such a lateral 
drift term. 

L i q u i d  shear  s tress  

The next relation to be considered is the shear stress in the liquid phase. Again, a 
turbulent viscosity approach will be taken with the turbulent diffusivity (eL) of the liquid 
given by a mixing length model. Hence, 

duL [20] 
rxy.L = eL dy  ' 

,2 duL [21] 
eL = - k : ( y c  - y )  dy  " 

Equations [18] and [21] are similar. Both use the same mixing length constant k 2 (mainly 
due to lack of any better information). However, the gradients are different because the 
relative velocity determine forces acting on the gas phase while the variation of the liquid 
velocity determines shear forces in the liquid phase alone. In a rectangular channel 
secondary flows exist near the corners. The literature available to the authors does not 
present the effect of this flow on the diffusivity. However as will be seen from the reasonable 
agreement between theory and experiment, the present expression is adequate. 

W a l l  d rag  f o r c e s  

The flow under consideration is that of a gas-liquid flow which is flowing upward (x 
direction) with variation of velocity and void in the transverse direction (y  direction). The 
flow is confined between parallel plates (z direction). The velocities and void profiles to be 
obtained are the averages for the z direction. The confining plates impact on the flow by 
introducing drag forces on the liquid phase as indicated in [14]. If variation of the frictional 
drag with y is neglected as a first approximation, then conventional wall drag relations can 
be used. Data from Jones (1973) shows that with an aspect ratio of 10:1 in a rectangular 
geometry, one finds significant variations of void fraction along the y direction. The 
literature shows that aspect ratios 20:1 and up are considered adequate for one dimensional 
flow analysis. The significance of the variations in the y direction is shown in the 
experimental results. Thus, 

F,,x.a - ~},Ca(G~/2pL)/Dh, [22] 

where q~} is the two-phase multiplier, Ga designates liquid mass flow rate and Dh hydraulic 
diameter. 

Wallis (1969) indicates that a value of Ca - 0.005 (friction factor) is reasonably accurate 
for a wide range of air-water flows. Data of Nakoryakov el al. (1981), have shown that for 
fl > 0.25, which is the case in this study, agreement exists between their data and the 
correlation of Armand (1950) in regard to the value of the two-phase wall shear. The two 
phase multiplier for low-quality gas-liquid flows is 

4~ = 1 + x ( p L / p c  - 1), [23] 

where x is the gas quality. 
This approximation to the friction term applies to the shear stress in the z direction. 

F l o w  reg ime  cons idera t ions  

A constitutive relation is still needed for the relative velocity used in [19] and in 
calculating the gas velocity profile from the liquid velocity profile. The drift-flux model of 
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Zuber and Findlay (1965) can be used to supply this relation. The relation between relative 
velocity and drift velocity can be represented as 

u~., = ua  - uL = {(Co - 1)j + u a j } / e L ,  [24] 

where uc~ is the drift flux velocity of the gas and Co the distribution parameter of two-phase 
flow. The expression ur,~ used in [24] relate to the average relative velocity between the 
phases. In this work it will be used as an expression for the local relative velocity and varies 
with eL across the channel in the absence of any more suitable correlations for this term. This 
term has the right trend in that u,~t increases as one approaches the core because eL usually 
decreases, while the other terms in this expression are constant, as the axis is approached. 

Zuber and Findlay have shown that the drift velocities are functions of flow regime. They 
present the following relations for round tubes: 

Bubbly flow regime: 

u a j  = 1 . 5 ( o g / p L )  ' / '  [25] 

a = surface tension. 
Slug flow regime: 

u c j  = 0 . 3 5 ( g D h )  1/2. [26] 

The values of Co of 1.23 and 1.2 were used from Jones (1973) for bubbly and slug flow 
respectively. 

SOLUTION OF EQUATION SET 

The solution of the equation set will now be outlined. First, an expression for the void 
profile will be obtained. Equation [24] is substituted into [19] and the resulting expression is 
substituted into [ 13]. After rearrangement, the result is 

dec A{(Co - 1)j + uGj} Ec [27] 
dy (Yc - y)2 1 - Ea' 

where A = 6 C g J ~ r k ' ( p  - pi); T = {(Co - 1)j + ucj}, where UL is dynamic liquid viscosity. 
Equation [27] is integrated by first nondimensionalizing the distance from the axis of 
symmetry. Thus, 

s = 1 --  Y / Y c .  [281 

Then, an analytical solution for Ea is obtained, i.e. 

+ E a c -  E~ = 1 - . [29] 

This equation satisfies the requirement that Ea approaches zero as s approaches zero, i.e. at 
the wall. The solution does not give zero void gradient near the center of the channel. 
However, the void distribution is quite flat in this region. The constant A contains the 
unknown parameters C and (p - Pi), and, hence, must be determined by matching the data. 
The centerline gas void fraction Eac will be determined by matching the gas and liquid flow 
rates given in [4]. 

In order to obtain an expression for the liquid velocity, the shear relationship of [20] and 
[21] plus the wall drag relations of [22] and [23] are substituted into [14]. A differential 
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Table 1. Experimental conditions 
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System (gage) 
Run No. M, (kg/s)  Ma (kg/s)  Regime Temp. (*C) Pressure ( N / c m  z) 

1 0.68 7.1 x 10 -4 Bubbly 24.0 !.745 
2 0.73 12.5 x 10 -4 Slug 24.0 2.233 
3 0.78 17.1 x 10 -4 Slug 23.5 3.065 
4 0.92 22.6 x 10 -4 Slug 25.0 4.188 
5 0.91 4.5 x 10 -4 Bubbly 24.0 2.213 
6 0.83 6.4 x 10 -4 Bubbly 24.0 1.745 

equation for the liquid velocity of the following form is obtained: 

[ ] ,Lk2(yc _ y)2 ~ dr ] = fo r _ ~zz + 'LPLg~ + Fw~,L dy [301 

with the boundary condition that UL ffi 0 when y ffi Yc- This equation can be solved for UL if 
values of the pressure gradient are given. 

The gas velocity distribution can be obtained from [24] once values of liquid velocity and 
void profile are known. Thus, 

uo  = uL + {(Co - 1)j  + [31] 

The mixing length constant k 2 w a s  set equal to 0.08. The value of A is 2.57 x 10 -3 s. This left 
two unknown parameters ~cc and dp /dx  in [2] through [31]. An iteration was performed by 
varying these two parameters until the flow rates calculated by [4] matched the experimen- 
tal values as measured by the total flow measuring meters. 

R E S U L T S  A N D  D I S C U S S I O N  

Six sets of experimental data for the vertical channel were obtained by Moujaes (1980). 
The test conditions and flow regimes are indicated in table 1. These six data sets are equally 
divided between the bubbly and slug flow regimes. Table 2 indicates the values of the 
parameters selected in obtaining the theoretical velocity and void distributions. Since the 
pressure gradient was one of the selected parameters, this quantity could be compared to the 
measured value. This comparison is also shown in table 2. 

Figures 1 through 6 show the resulting plots of void fraction, liquid velocity, and gas 
velocity for the six sets of data. It is important to note that the theoretical values were 
selected to agree with liquid and gas flow rates as measured by flow meters at the entrance to 
the test section. The experimental results integrated over the flow area are between 5% and 
20% below the values determined by the flowmeters. This difference is related to the 
accuracy of the void and velocity measurements and accounts for the major discrepency 
between the theoretical and experimental curves. Hence, if the experimental velocities were 
slightly increased, better agreement would be obtained with the theoretical model. 

Table 2. Theoretical results 

Theoretical Experimental 
Center press, drop pressure drop 

Run No. void q c  N/(cm3) ( N / c m  3) Factor .4 (s) 

1 0.358 6.9 x 10 -3 6.6 x 10 -3 2.57 x 10 -3 
2 0.464 6.3 x 10 -3 5.7 x 10 -3 2.57 x 10 -3 
3 0.514 6.1 x 10 -3 5.4 x 10 -3 2.57 x 10 -3 
4 0.535 6.3 x 10 -3 5.9 x 10 -3 2.57 x 10 -3 
5 0.209 8.4 x 10 -3 7.9 x 10 -3 2.57 x 10 -3 
6 0.297 7.6 x 10 -3 6.6 x 10 - j  2.57 x 10 -3 
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Unfortunately, not enough experimental data are available to describe in more detail the 
P - Pi term due to the complex physical behavior involved when the flow fields of other 
bubbles interfere with a bubble in question which make an analytical description of the term 
impossible. 

Malnes (1966), Nakoryakov & Kashinsky (1981), and Herringe & Davis (1976) have 
reported off-center peaking of void fraction profiles in bubbly flows. This work also shows 
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Figure 2. Slug flow (for legend see figure 1). 
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similar experimental trends in runs 1, 5, and 
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Figure 4. Slug flow (for legend see figure 1). 

6. Rouhani (1976) suggested that this 
phenomenon could be as a result of vortex generation near the walls due to shear effects. This 
vortex generation in turn traps the smaller bubbles near the locus of the center of rotation of 
the vortices. The action persists until the two off-center peaks are bridged by the formation 
of large slugs (i.e. slug-flow regime) at higher voidage. The present model does not predict 
this localized behavior, but indicates a monotonic increase in voidage more typical of the core 
of the flow. 
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Figure 5. Bubbly flow (for legend see figure i). Figure 6. Bubbly flow (for legend see figure 1). 
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In the slug flow data sets, there are no off-center peaks as expected and the model seems 
to show better agreement with the data. 

Another result of this work is that the use of an "eddy viscosity" concept to calculate the 
continuous phase turbulent relations seems to work reasonably well. No local values of gas or 
liquid velocities could be obtained very close to the wall. Nevertheless, these are expected to 
be similar to single-phase flow with high gradients near the walls. The experimental data 
supports this conclusion as far as it extends into the near-wall region. 

Nakoryakov & Kashinsky (1981) have recently obtained measurements in this region as 
did Sato & Sadatomi (1981) and have presented an analysis similar to the results of this 
section. However, their analysis required the void profile as input. Lahey (1978) has also 
studied the bubbly void fraction for the purpose of predicting near wall void peaking. He 
used the concept of an "inner" and "outer" solution to the axial momentum equation. 
However, the means of joining the two solutions still relies on empirical fitting of the 
results. 

The total pressure drop predicted by the model differs from the measured one between 
2%-10% which is considered satisfactory and not surprising because all these flow situations 
are still gravity dominated two-phase flow phenomena. 

The present approach has one feature that is unique from those just mentioned. That 
feature is it being used to model two-phase flow regime and predict the four sought quantities 
simultaneously (dP/dx) ,  ~, uL, and from it uc. 

More work is needed to check the model against the data of Jones (1973) for void 
fraction and liquid velocity distributions in rectangular channels and with Herringe & Davis 
(1976) for void fraction and gas velocity distributions in circular tubes. 

U 

U ~  

k =  
F =  
P =  
j =  
g =  

h =  
Q= 
C= 

c~= 
GL = 

d =  

Yc= 
Dh= 

X =  

L =  

N O M E N C L A T U R E  

velocity in x direction 
velocity in y direction 
Phase; G for gas and L for liquid 
force, interfacial, wall friction 
system pressure 
total volumetric flux 
acceleration due to gravity 
channel half width 
volumetric flux rate 
proportionality constant 
single-phase drag coefficient 
liquid mass velocity 
bubble diameter 
half distance transverse to main flow direction 
hydraulic diameter of channel 
gas quality 
flow distribution parameter 
axial length of the experimental data plane from two-phase flow entry. 

Greek symbols 
= void fraction gas or liquid 

~" = shear stress 
e = turbulent eddy diffusivity for transverse lift term 

eL = turbulent eddy diffusivity for liquid shear stress 
q~} = two-phase multiplier 
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p = density 
tr ~ surface tension 
/3 ~ ratio of gas volume flux to total volume flux 
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